Zusatzpension für langjährige Mitarbeiterinnen und Mitarbeiter

Link zu Maxima Online: http://maxima-online.org/?inc=r-347619552
Mit Lösungssuche: http://maxima-online.org/?inc=r-2030683761
Mehr dokumentiert: http://maxima-online.org/?inc=r1550537636

Eine Schülerin hat über Facebook nach einer Lösung der
Aufgabe (%i1) gefragt.

(%i1) "*"/* Ein Unternehmen zahlt allen Arbeitnehmerinnen und
Arbeitnehmern, die 10 Jahre oder länger im Betrieb waren, eine
firmeninterne Zusatzpension (ab dem Erreichen des gesetzlichen
Pensionsantrittsalters) von 15€ pro Monat. Diese Zusatzpension
steigt pro zusätzlichem Dienstjahr um 0,50€. Der Betriebsrat
schlägt vor, dass mit jedem weiteren Jahr der Firmenzugehörigkeit
die Zusatzpension um 3% steigen sollte, das wären nur 0,45€, also
für das Unternehmen günstiger.
(a) Soll das Management auf diesen Vorschlag eingehen?
(b) Welche Regelung wäre ab dem wievielten Jahr der
Unternehmenszugehörigkeit günstiger? */;
(%o1)                                  *
(%i2) "*"/* Lösung (n sind die zusätzlichen Dienstjahre) */;
(%o2)                                  *
(%i3) ZPU:15+0.5*n /* lineares Wachstum laut Vorschlag des
Unternehmens */;
(%o3)                             0.5 n + 15
(%i4) ZPB:15*1.03^n /* exponentielles Wachstum laut Vorschlag
des Betriebsrates */;
                                          n
(%o4)                              15 1.03
(%i5) "*"/* Ab dem 9. Jahr (das ist bei mehr als 18 Dienstjahren)
schlägt das exponentielle Wachstum zu Ungunsten des Unternehmens
durch */;
(%o5)                                  *
(%i6) plot2d([ZPU,ZPB],[n,0,35]);
(%o6)  plot2d([ZPU,ZPB],[n,0,35]);;

(%i7) ZPU[n]:=''ZPU;
(%o7)                         ZPU  := 0.5 n + 15
                                 n
(%i8) ZPB[n]:=''ZPB;
                                              n
(%o8)                          ZPB  := 15 1.03
                                  n
(%i9) [transpose(makelist(n,n,0,20)),
transpose(makelist(ZPU[n],n,0,20)),
transpose(makelist(ZPB[n],n,0,20))];
                    [ 0  ]  [  15  ]  [       15.0        ]
                    [    ]  [      ]  [                   ]
                    [ 1  ]  [ 15.5 ]  [       15.45       ]
                    [    ]  [      ]  [                   ]
                    [ 2  ]  [ 16.0 ]  [      15.9135      ]
                    [    ]  [      ]  [                   ]
                    [ 3  ]  [ 16.5 ]  [     16.390905     ]
                    [    ]  [      ]  [                   ]
                    [ 4  ]  [ 17.0 ]  [    16.88263215    ]
                    [    ]  [      ]  [                   ]
                    [ 5  ]  [ 17.5 ]  [   17.3891111145   ]
                    [    ]  [      ]  [                   ]
                    [ 6  ]  [ 18.0 ]  [  17.910784447935  ]
                    [    ]  [      ]  [                   ]
                    [ 7  ]  [ 18.5 ]  [ 18.44810798137305 ]
                    [    ]  [      ]  [                   ]
                    [ 8  ]  [ 19.0 ]  [ 19.00155122081424 ]
                    [    ]  [      ]  [                   ]
                    [ 9  ]  [ 19.5 ]  [ 19.57159775743867 ]
                    [    ]  [      ]  [                   ]
(%o9)              [[ 10 ], [ 20.0 ], [ 20.15874569016183 ]]
                    [    ]  [      ]  [                   ]
                    [ 11 ]  [ 20.5 ]  [ 20.76350806086668 ]
                    [    ]  [      ]  [                   ]
                    [ 12 ]  [ 21.0 ]  [ 21.38641330269268 ]
                    [    ]  [      ]  [                   ]
                    [ 13 ]  [ 21.5 ]  [ 22.02800570177346 ]
                    [    ]  [      ]  [                   ]
                    [ 14 ]  [ 22.0 ]  [ 22.68884587282667 ]
                    [    ]  [      ]  [                   ]
                    [ 15 ]  [ 22.5 ]  [ 23.36951124901147 ]
                    [    ]  [      ]  [                   ]
                    [ 16 ]  [ 23.0 ]  [ 24.07059658648181 ]
                    [    ]  [      ]  [                   ]
                    [ 17 ]  [ 23.5 ]  [ 24.79271448407626 ]
                    [    ]  [      ]  [                   ]
                    [ 18 ]  [ 24.0 ]  [ 25.53649591859855 ]
                    [    ]  [      ]  [                   ]
                    [ 19 ]  [ 24.5 ]  [ 26.30259079615651 ]
                    [    ]  [      ]  [                   ]
                    [ 20 ]  [ 25.0 ]  [ 27.0916685200412  ]
(%i10)

Es geht kurzgefasst um eine Lösung von 15+0.5*n = 15*1.03^n

Über Johnny Weilharter

Direktor i. R. der Bundeshandelsakademie und Bundeshandelssschule in Tamsweg, Österreich
Dieser Beitrag wurde unter Wachstum veröffentlicht. Setze ein Lesezeichen auf den Permalink.

Schreibe einen Kommentar

Trage deine Daten unten ein oder klicke ein Icon um dich einzuloggen:

WordPress.com-Logo

Du kommentierst mit Deinem WordPress.com-Konto. Abmelden / Ändern )

Twitter-Bild

Du kommentierst mit Deinem Twitter-Konto. Abmelden / Ändern )

Facebook-Foto

Du kommentierst mit Deinem Facebook-Konto. Abmelden / Ändern )

Google+ Foto

Du kommentierst mit Deinem Google+-Konto. Abmelden / Ändern )

Verbinde mit %s