Nullstellen einer Polynomfunktion

Aufgabe: Die Nullstellen einer gegebenen Polynomfunktion 4. Grades sind zu bestimmen.

Programmcode:

p4(x):=x^4-x^3-10*x^2-x+1;
l1:realroots(p4(x));
l1:l1,numer;
l2:allroots(p4(x));
l3:solve(p4(x)=0,x);
l3:l3,numer;

Maxima Online: http://maxima-online.org/?inc=r-1272412770

Anmerkung: warum eine der vier Lösungen mit realroots() von den anderen Ergebnissen abweicht ist mir nicht geläufig.

Man löse diese Aufgabe auch mit dem Geogebra-Zeichenblatt! http://www.geogebratube.org/student/m132327
Wie das geht, sieht man im Youtube-Video: http://youtu.be/ZWbc0EWL3ko
Unbedingt selbst ausprobieren!

Anmerkung: Ohne Computereinsatz wäre diese Aufgabe wohl sehr schwierig und rechenaufwändig. Man sollte sich Gedanken darüber machen, dass das kaum geht. Auch das sogenannte Newtonsche Näherungsverfahren (dazu braucht man die erste Ableitung der Polynomfunktion) und wenigstens ein Tabellenkalkulationsprogramm. Mit  einem Taschenrechner kann das schon viel Tipparbeit sein.

Übung 1:
Zeige, dass die Funktion p3(x)=x^3+x-1 nur eine reelle und dafür zwei komplexe Lösungen hat!

Übung 2: (Kleingruppenarbeit)

Mit dem Geogebra-Zeichenblatt http://www.geogebratube.org/student/m132327 kann man mit polynom[{A,B,C,D,E}] Beispiele für Polynome 4. Grades erzeugen die

  • 4 Nullstellen,
  • 2 Nullstelle oder
  • gar keine Nullstelle

haben.

Polynome 5. Grades aus 6 Punkten und

  • 1 Nullstelle,
  • 3 Nullstellen und
  • 5 Nullstellen

sollten auch zu finden sein.

Damit kann man das Geogebra-Ergebnis nachrechnen:
http://maxima-online.org/?inc=r-1061486953

Es gibt geeignete Funktionen siehe http://maxima-online.org/?inc=r-1058806523, aber man soll seine Beispiele mit dem Geogebra-Zeichenblatt finden.

Im Geogebra Formelrechner http://www.geogebratube.org/student/m96860 muss man die imaginäre Einheit mit ALT+i eingeben! Abschluss einer Zeilen mit ENTER, SHIFT+ENTER und STRG+ENTER haben unterschiedliche Auswirkungen.

Wir konstruieren eine Polynomfunktion 4. Grades!

keine_Nullstellen

Über Johnny Weilharter

Direktor i. R. der Bundeshandelsakademie und Bundeshandelssschule in Tamsweg, Österreich
Dieser Beitrag wurde unter ANALYSIS, Creative Commons, FUNKTIONEN, GEOGEBRA, Geogebra-Zeichnung, Rationale Funktionen abgelegt und mit verschlagwortet. Setze ein Lesezeichen auf den Permalink.

Schreibe einen Kommentar

Trage deine Daten unten ein oder klicke ein Icon um dich einzuloggen:

WordPress.com-Logo

Du kommentierst mit Deinem WordPress.com-Konto. Abmelden / Ändern )

Twitter-Bild

Du kommentierst mit Deinem Twitter-Konto. Abmelden / Ändern )

Facebook-Foto

Du kommentierst mit Deinem Facebook-Konto. Abmelden / Ändern )

Google+ Foto

Du kommentierst mit Deinem Google+-Konto. Abmelden / Ändern )

Verbinde mit %s