Muster-Erkennung

Aufgabe: Das Muster ist leicht zu erkennen. Es ist aber interessant, das Muster zu programmieren (zweidimensionale Felder). Code: Summanden:[[5,2],[6,3],[7,4],[8,3],[9,6],[13,6],[16,5],[17,8]]$ n:length(Summanden)$ S1:makelist(Summanden[i][1],i,1,n)$ S2:makelist(Summanden[i][2],i,1,n)$ s(x):=block(S:map(string,[x[1]-x[2],x[1]+x[2],x[1]*x[2]]),sconcat(S[1],S[2],S[3]))$ Summen:map(s,Summanden)$ disp([" x "," y ","Summe"])$ Aufgabe:[transpose(S1),transpose(S2),transpose(Summen)]$…

Der mathematische Christbaum

Aufgabe (es soll mindestens 2 Lösungen geben, es werden wohl viele sein): https://twitter.com/pickover/status/801597352184201216 Lösung: Code: Ziffern:makelist(z,z,1,9); P:listify(permutations(setify(Ziffern)))$ n:3;i:0; while n>1 do block( ev(i:i+1),Folge:P[i],S1:sum(Folge[j],j,1,4), S2:sum(Folge[j],j,4,7), S3:sum(Folge[j],j,7,9)+Folge[1], Seitensummen:[S1,S2,S3], n:cardinality(setify(Seitensummen)) ); display(Folge,Seitensummen); Erklärung…

Mathematik ist schön

Mathematik ist schön, findet Susanna Jilka. Ich auch. Ihr Facebookeintrag: https://www.facebook.com/photo.php?fbid=1127133460638207&set=a.277300458954849.75232.100000246922807&type=3 hat mich zum folgenden CAS Maxima Programm motiviert: http://maxima-online.org/?inc=r-505674596 Code: s(n):=makelist(i,i,1,n); z1:makelist(s(n),n,1,9); faktor(n):=makelist(10^(i-1),i,1,n); F:makelist(faktor(i),i,1,9); Zahl:makelist(z1[i].reverse(F[i]),i,1,9); Ergebnis:Zahl*8+s(9); Programmzeile Erklärung s(n):=makelist(i,i,1,n);…